{ "id": "1805.11855", "version": "v1", "published": "2018-05-30T08:40:54.000Z", "updated": "2018-05-30T08:40:54.000Z", "title": "Rational extension of Newton diagram for the positivity of ${}_1F_2$ hypergeometric functions and Askey-Szegö problem", "authors": [ "Yong-Kum Cho", "Seok-Young Chung", "Hera Yun" ], "comment": "23 pages, 6 figures", "categories": [ "math.CA" ], "abstract": "We present a rational extension of Newton diagram for the positivity of ${}_1F_2$ generalized hypergeometric functions. As an application, we give upper and lower bounds for the transcendental roots $\\beta(\\alpha)$ of \\begin{align*} \\int_0^{j_{\\alpha, 2}} t^{-\\beta} J_\\alpha(t) dt = 0\\qquad(-1<\\alpha\\le 1/2), \\end{align*} where $j_{\\alpha, 2}$ denotes the second positive zero of Bessel function $J_\\alpha$.", "revisions": [ { "version": "v1", "updated": "2018-05-30T08:40:54.000Z" } ], "analyses": { "subjects": [ "26D15", "33C10", "33C20" ], "keywords": [ "newton diagram", "rational extension", "positivity", "lower bounds", "transcendental roots" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }