arXiv Analytics

Sign in

arXiv:1803.10302 [math.FA]AbstractReferencesReviewsResources

Remark on atomic decompositions for Hardy space $H^1$ in the rational Dunkl setting

Jacek Dziubański, Agnieszka Hejna

Published 2018-03-27, updated 2018-05-13Version 2

Let $\Delta$ be the Dunkl Laplacian on $\mathbb R^N$ associated with a normalized root system $R$ and a multiplicity function $k(\alpha)\geq 0$. We say that a function $f$ belongs to the Hardy space $H^1_{\Delta}$ if the nontangential maximal function $\mathcal M_H f(\mathbf x)=\sup_{\| \mathbf x-\mathbf y\|<t} |\exp(t^2\Delta )f(\mathbf x)|$ belongs to $L^1(w(\mathbf x)\, d\mathbf x)$, where $w(\mathbf x)=\prod_{\alpha\in R} |\langle \alpha,\mathbf x\rangle|^{k(\alpha)}$. We prove that $H^1_\Delta$ coincides with the space $H^1_{\rm atom}(\mathbb R^N, \| \mathbf x-\mathbf y\|, w(\mathbf x)d\mathbf x)$ understood as the atomic Hardy space on the space of homogeneous type in the sense of Coifman--Weiss. To this end we improve estimates for the heat kernel of $e^{t\Delta}$.

Related articles: Most relevant | Search more
arXiv:1802.06607 [math.FA] (Published 2018-02-19)
Harmonic functions, conjugate harmonic functions and the Hardy space $H^1$ in the rational Dunkl setting
arXiv:2110.15735 [math.FA] (Published 2021-10-29, updated 2021-11-05)
Dimension-free $L^p$ estimates for vectors of Riesz transforms in the rational Dunkl setting
arXiv:2004.14434 [math.FA] (Published 2020-04-29)
The atomic Hardy space for a general Bessel operator