{ "id": "1803.10302", "version": "v2", "published": "2018-03-27T20:22:48.000Z", "updated": "2018-05-13T10:31:27.000Z", "title": "Remark on atomic decompositions for Hardy space $H^1$ in the rational Dunkl setting", "authors": [ "Jacek DziubaƄski", "Agnieszka Hejna" ], "comment": "2 figures", "categories": [ "math.FA" ], "abstract": "Let $\\Delta$ be the Dunkl Laplacian on $\\mathbb R^N$ associated with a normalized root system $R$ and a multiplicity function $k(\\alpha)\\geq 0$. We say that a function $f$ belongs to the Hardy space $H^1_{\\Delta}$ if the nontangential maximal function $\\mathcal M_H f(\\mathbf x)=\\sup_{\\| \\mathbf x-\\mathbf y\\|