arXiv Analytics

Sign in

arXiv:1802.06607 [math.FA]AbstractReferencesReviewsResources

Harmonic functions, conjugate harmonic functions and the Hardy space $H^1$ in the rational Dunkl setting

Jean-Philippe Anker, Jacek Dziubański, Agnieszka Hejna

Published 2018-02-19Version 1

In this work we extend the theory of the classical Hardy space $H^1$ to the rational Dunkl setting. Specifically, let $\Delta$ be the Dunkl Laplacian on a Euclidean space $\mathbb{R}^N$. On the half-space $\mathbb{R}_+\times\mathbb{R}^N$, we consider systems of conjugate $(\partial_t^2+\Delta_{\mathbf{x}})$-harmonic functions satisfying an appropriate uniform $L^1$ condition. We prove that the boundary values of such harmonic functions, which constitute the real Hardy space $H^1$, can be characterized in several different ways, namely by means of atoms, Riesz transforms, maximal functions or Littlewood-Paley square functions.

Related articles: Most relevant | Search more
arXiv:1803.10302 [math.FA] (Published 2018-03-27, updated 2018-05-13)
Remark on atomic decompositions for Hardy space $H^1$ in the rational Dunkl setting
arXiv:2110.15735 [math.FA] (Published 2021-10-29, updated 2021-11-05)
Dimension-free $L^p$ estimates for vectors of Riesz transforms in the rational Dunkl setting
arXiv:1210.6778 [math.FA] (Published 2012-10-25, updated 2013-06-11)
A note on maximal commutators and commutators of maximal functions