{ "id": "1802.06607", "version": "v1", "published": "2018-02-19T12:25:05.000Z", "updated": "2018-02-19T12:25:05.000Z", "title": "Harmonic functions, conjugate harmonic functions and the Hardy space $H^1$ in the rational Dunkl setting", "authors": [ "Jean-Philippe Anker", "Jacek DziubaƄski", "Agnieszka Hejna" ], "categories": [ "math.FA" ], "abstract": "In this work we extend the theory of the classical Hardy space $H^1$ to the rational Dunkl setting. Specifically, let $\\Delta$ be the Dunkl Laplacian on a Euclidean space $\\mathbb{R}^N$. On the half-space $\\mathbb{R}_+\\times\\mathbb{R}^N$, we consider systems of conjugate $(\\partial_t^2+\\Delta_{\\mathbf{x}})$-harmonic functions satisfying an appropriate uniform $L^1$ condition. We prove that the boundary values of such harmonic functions, which constitute the real Hardy space $H^1$, can be characterized in several different ways, namely by means of atoms, Riesz transforms, maximal functions or Littlewood-Paley square functions.", "revisions": [ { "version": "v1", "updated": "2018-02-19T12:25:05.000Z" } ], "analyses": { "subjects": [ "42B30", "33C52", "35J05", "35K08", "42B25", "42B35", "42B37", "42C05" ], "keywords": [ "rational dunkl setting", "conjugate harmonic functions", "littlewood-paley square functions", "real hardy space", "maximal functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }