arXiv:1711.02871 [math.NT]AbstractReferencesReviewsResources
On the Number of Connected Components of Ranges of Divisor Functions
Published 2017-11-08Version 1
For $r \in \mathbb{R}, r> 1$ and $n \in \mathbb{Z}^+$, the divisor function $\sigma_{-r}$ is defined by $\sigma_{-r}(n) := \sum_{d \vert n} d^{-r}$. In this paper we show the number $C_r$ of connected components of $\overline{\sigma_{-r}(\mathbb{Z}^+)}$ satisfies $$\pi(r) + 1 \leq C_r \leq \frac{1}{2}\exp\left[\frac{1}{2}\dfrac{r^{20/9}}{(\log r)^{29/9}} \left( 1 + \frac{\log\log r}{\log r - \log\log r} + \frac{\mathcal{O}(1)}{\log r}\right) \right],$$ where $\pi(t)$ is the number of primes $p\leq t$. We also show that $C_r$ does not take all integer values, specifically that it cannot be equal to $4$.
Related articles: Most relevant | Search more
arXiv:2212.05549 [math.NT] (Published 2022-12-11)
On a sum of a multiplicative function linked to the divisor function over the set of integers B-multiple of 5
arXiv:1808.07550 [math.NT] (Published 2018-08-22)
On Gaps in the Closures of Images of Divisor Functions
arXiv:2010.05018 [math.NT] (Published 2020-10-10)
Inequalities for Taylor series involving the divisor function