arXiv Analytics

Sign in

arXiv:2212.05549 [math.NT]AbstractReferencesReviewsResources

On a sum of a multiplicative function linked to the divisor function over the set of integers B-multiple of 5

Mihoub Bouderbala

Published 2022-12-11Version 1

Let $d(n)$ and $d^{\ast}(n)$ be the numbers of divisors and the numbers of unitary divisors of the integer $n\geq1$. In this paper, we prove that \[ \underset{n\in\mathcal{B}}{\underset{n\leq x}{\sum}}\frac{d(n)}{d^{\ast}% (n)}=\frac{16\pi% %TCIMACRO{\U{b2}}% %BeginExpansion {{}^2}% %EndExpansion }{123}\underset{p}{\prod}(1-\frac{1}{2p% %TCIMACRO{\U{b2}}% %BeginExpansion {{}^2}% %EndExpansion }+\frac{1}{2p^{3}})x+\mathcal{O}\left( x^{\frac{\ln8}{\ln10}+\varepsilon }\right) ,~\left( x\geqslant1,~\varepsilon>0\right) , \] where $\mathcal{B}$ is the set which contains any integer that is not a multiple of $5,$ but some permutations of its digits is a multiple of $5.$

Comments: 7pages
Categories: math.NT
Subjects: 11A25, 11N37
Related articles: Most relevant | Search more
arXiv:1708.02610 [math.NT] (Published 2017-08-08)
The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures
arXiv:1711.02871 [math.NT] (Published 2017-11-08)
On the Number of Connected Components of Ranges of Divisor Functions
arXiv:1711.05924 [math.NT] (Published 2017-11-16)
Improving an inequality for the divisor function