{ "id": "1711.02871", "version": "v1", "published": "2017-11-08T08:43:53.000Z", "updated": "2017-11-08T08:43:53.000Z", "title": "On the Number of Connected Components of Ranges of Divisor Functions", "authors": [ "Nina Zubrilina" ], "comment": "21 pages", "categories": [ "math.NT" ], "abstract": "For $r \\in \\mathbb{R}, r> 1$ and $n \\in \\mathbb{Z}^+$, the divisor function $\\sigma_{-r}$ is defined by $\\sigma_{-r}(n) := \\sum_{d \\vert n} d^{-r}$. In this paper we show the number $C_r$ of connected components of $\\overline{\\sigma_{-r}(\\mathbb{Z}^+)}$ satisfies $$\\pi(r) + 1 \\leq C_r \\leq \\frac{1}{2}\\exp\\left[\\frac{1}{2}\\dfrac{r^{20/9}}{(\\log r)^{29/9}} \\left( 1 + \\frac{\\log\\log r}{\\log r - \\log\\log r} + \\frac{\\mathcal{O}(1)}{\\log r}\\right) \\right],$$ where $\\pi(t)$ is the number of primes $p\\leq t$. We also show that $C_r$ does not take all integer values, specifically that it cannot be equal to $4$.", "revisions": [ { "version": "v1", "updated": "2017-11-08T08:43:53.000Z" } ], "analyses": { "subjects": [ "11A25" ], "keywords": [ "divisor function", "connected components", "integer values" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }