arXiv Analytics

Sign in

arXiv:1709.05068 [math.RT]AbstractReferencesReviewsResources

On a minimal counterexample to Brauer's $k(B)$-conjecture

Gunter Malle

Published 2017-09-15Version 1

We study Brauer's long-standing $k(B)$-conjecture on the number of characters in $p$-blocks for finite quasi-simple groups and show that their blocks do not occur as a minimal counterexample for $p\ge5$. For $p=3$ we obtain that the principal 3-blocks do not provide minimal counterexamples. We also determine the precise number of irreducible characters in unipotent blocks of classical groups for odd primes.

Related articles: Most relevant | Search more
arXiv:0805.4575 [math.RT] (Published 2008-05-29, updated 2009-04-30)
On a conjecture of Kottwitz and Rapoport
arXiv:1706.00189 [math.RT] (Published 2017-06-01)
On a conjecture of Reeder
arXiv:1405.6371 [math.RT] (Published 2014-05-25, updated 2014-09-18)
Sur une conjecture de Breuil-Herzig