{ "id": "1709.05068", "version": "v1", "published": "2017-09-15T06:23:27.000Z", "updated": "2017-09-15T06:23:27.000Z", "title": "On a minimal counterexample to Brauer's $k(B)$-conjecture", "authors": [ "Gunter Malle" ], "categories": [ "math.RT", "math.GR" ], "abstract": "We study Brauer's long-standing $k(B)$-conjecture on the number of characters in $p$-blocks for finite quasi-simple groups and show that their blocks do not occur as a minimal counterexample for $p\\ge5$. For $p=3$ we obtain that the principal 3-blocks do not provide minimal counterexamples. We also determine the precise number of irreducible characters in unipotent blocks of classical groups for odd primes.", "revisions": [ { "version": "v1", "updated": "2017-09-15T06:23:27.000Z" } ], "analyses": { "subjects": [ "20C15", "20C33" ], "keywords": [ "minimal counterexample", "conjecture", "finite quasi-simple groups", "odd primes", "precise number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }