arXiv Analytics

Sign in

arXiv:0805.4575 [math.RT]AbstractReferencesReviewsResources

On a conjecture of Kottwitz and Rapoport

Qëndrim R. Gashi

Published 2008-05-29, updated 2009-04-30Version 2

We prove a conjecture of Kottwitz and Rapoport which implies a converse to Mazur's Inequality for all split and quasi-split (connected) reductive groups. These results are related to the non-emptiness of certain affine Deligne-Lusztig varieties.

Comments: Added quasi-split case; simplified proof of split case
Categories: math.RT, math.NT
Related articles: Most relevant | Search more
arXiv:2212.06670 [math.RT] (Published 2022-12-13)
On the dimension of some union of affine Deligne-Lusztig varieties
arXiv:2306.06873 [math.RT] (Published 2023-06-12)
Affine Deligne-Lusztig varieties via the double Bruhat graph II: Iwahori-Hecke algebra
arXiv:math/0303146 [math.RT] (Published 2003-03-12)
Formulas for the dimensions of some affine Deligne-Lusztig Varieties