arXiv Analytics

Sign in

arXiv:1709.02297 [math.FA]AbstractReferencesReviewsResources

Direct sums of finite dimensional $SL^\infty_n$ spaces

Richard Lechner

Published 2017-09-07Version 1

$SL^\infty$ denotes the space of functions whose square function is in $L^\infty$, and the subspaces $SL^\infty_n$, $n\in\mathbb{N}$, are the finite dimensional building blocks of $SL^\infty$. We show that the identity operator $I_{SL^\infty_n}$ on $SL^\infty_n$ well factors through operators $T : SL^\infty_N\to SL^\infty_N$ having large diagonal with respect to the standard Haar system. Moreover, we prove that $I_{SL^\infty_n}$ well factors either through any given operator $T : SL^\infty_N\to SL^\infty_N$, or through $I_{SL^\infty_N}-T$. Let $X^{(r)}$ denote the direct sum $\bigl(\sum_{n\in\mathbb{N}_0} SL^\infty_n\bigr)_r$, where $1\leq r \leq \infty$. Using Bourgain's localization method, we obtain from the finite dimensional factorization result that for each $1\leq r\leq \infty$, the identity operator $I_{X^{(r)}}$ on $X^{(r)}$ factors either through any given operator $T : X^{(r)}\to X^{(r)}$, or through $I_{X^{(r)}} - T$. Consequently, the spaces $\bigl(\sum_{n\in\mathbb{N}_0} SL^\infty_n\bigr)_r$, $1\leq r\leq \infty$, are all primary.

Related articles: Most relevant | Search more
arXiv:1610.01506 [math.FA] (Published 2016-10-05)
Factorization in mixed norm Hardy and BMO spaces
arXiv:1802.02857 [math.FA] (Published 2018-02-08)
Dimension dependence of factorization problems: Hardy spaces and $SL_n^\infty$
arXiv:1003.5708 [math.FA] (Published 2010-03-30, updated 2010-09-10)
Direct sums and the Szlenk index