{ "id": "1709.02297", "version": "v1", "published": "2017-09-07T15:09:26.000Z", "updated": "2017-09-07T15:09:26.000Z", "title": "Direct sums of finite dimensional $SL^\\infty_n$ spaces", "authors": [ "Richard Lechner" ], "comment": "29 pages, 2 figures", "categories": [ "math.FA" ], "abstract": "$SL^\\infty$ denotes the space of functions whose square function is in $L^\\infty$, and the subspaces $SL^\\infty_n$, $n\\in\\mathbb{N}$, are the finite dimensional building blocks of $SL^\\infty$. We show that the identity operator $I_{SL^\\infty_n}$ on $SL^\\infty_n$ well factors through operators $T : SL^\\infty_N\\to SL^\\infty_N$ having large diagonal with respect to the standard Haar system. Moreover, we prove that $I_{SL^\\infty_n}$ well factors either through any given operator $T : SL^\\infty_N\\to SL^\\infty_N$, or through $I_{SL^\\infty_N}-T$. Let $X^{(r)}$ denote the direct sum $\\bigl(\\sum_{n\\in\\mathbb{N}_0} SL^\\infty_n\\bigr)_r$, where $1\\leq r \\leq \\infty$. Using Bourgain's localization method, we obtain from the finite dimensional factorization result that for each $1\\leq r\\leq \\infty$, the identity operator $I_{X^{(r)}}$ on $X^{(r)}$ factors either through any given operator $T : X^{(r)}\\to X^{(r)}$, or through $I_{X^{(r)}} - T$. Consequently, the spaces $\\bigl(\\sum_{n\\in\\mathbb{N}_0} SL^\\infty_n\\bigr)_r$, $1\\leq r\\leq \\infty$, are all primary.", "revisions": [ { "version": "v1", "updated": "2017-09-07T15:09:26.000Z" } ], "analyses": { "subjects": [ "46B25", "46B26", "60G46", "46B07" ], "keywords": [ "direct sum", "identity operator", "finite dimensional factorization result", "standard haar system", "finite dimensional building blocks" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }