arXiv Analytics

Sign in

arXiv:1610.01506 [math.FA]AbstractReferencesReviewsResources

Factorization in mixed norm Hardy and BMO spaces

Richard Lechner

Published 2016-10-05Version 1

Let $1\leq p,q < \infty$ and $1\leq r \leq \infty$. We show that the direct sum of mixed norm Hardy spaces $\big(\sum_n H^p_n(H^q_n)\big)_r$ and the sum of their dual spaces $\big(\sum_n H^p_n(H^q_n)^*\big)_r$ are both primary. We do so by using Bourgain's localization method and solving the finite dimensional factorization problem. In particular, we obtain that the spaces $\big(\sum_{n\in \mathbb N} H_n^1(H_n^s)\big)_r$, $\big(\sum_{n\in \mathbb N} H_n^s(H_n^1)\big)_r$, as well as $\big(\sum_{n\in \mathbb N} BMO_n(H_n^s)\big)_r$ and $\big(\sum_{n\in \mathbb N} H^s_n(BMO_n)\big)_r$, $1 < s < \infty$, $1\leq r \leq \infty$, are all primary.

Related articles: Most relevant | Search more
arXiv:1709.02297 [math.FA] (Published 2017-09-07)
Direct sums of finite dimensional $SL^\infty_n$ spaces
arXiv:1410.8786 [math.FA] (Published 2014-10-31)
Localization and Projections on Bi--Parameter BMO
arXiv:1111.6965 [math.FA] (Published 2011-11-29)
On the fixed points of nonexpansive mappings in direct sums of Banach spaces