{ "id": "1610.01506", "version": "v1", "published": "2016-10-05T16:22:05.000Z", "updated": "2016-10-05T16:22:05.000Z", "title": "Factorization in mixed norm Hardy and BMO spaces", "authors": [ "Richard Lechner" ], "comment": "29 pages, 8 figures", "categories": [ "math.FA" ], "abstract": "Let $1\\leq p,q < \\infty$ and $1\\leq r \\leq \\infty$. We show that the direct sum of mixed norm Hardy spaces $\\big(\\sum_n H^p_n(H^q_n)\\big)_r$ and the sum of their dual spaces $\\big(\\sum_n H^p_n(H^q_n)^*\\big)_r$ are both primary. We do so by using Bourgain's localization method and solving the finite dimensional factorization problem. In particular, we obtain that the spaces $\\big(\\sum_{n\\in \\mathbb N} H_n^1(H_n^s)\\big)_r$, $\\big(\\sum_{n\\in \\mathbb N} H_n^s(H_n^1)\\big)_r$, as well as $\\big(\\sum_{n\\in \\mathbb N} BMO_n(H_n^s)\\big)_r$ and $\\big(\\sum_{n\\in \\mathbb N} H^s_n(BMO_n)\\big)_r$, $1 < s < \\infty$, $1\\leq r \\leq \\infty$, are all primary.", "revisions": [ { "version": "v1", "updated": "2016-10-05T16:22:05.000Z" } ], "analyses": { "subjects": [ "46B25", "46B07", "46B26", "30H35", "30H10" ], "keywords": [ "bmo spaces", "finite dimensional factorization problem", "mixed norm hardy spaces", "bourgains localization method", "direct sum" ], "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable" } } }