arXiv Analytics

Sign in

arXiv:1709.01579 [math.DS]AbstractReferencesReviewsResources

Set-theoretical entropies of generalized shifts

Zahra Nili Ahmadabadi, Fatemah Ayatollah Zadeh Shirazi

Published 2017-09-05Version 1

In the following text for arbitrary $X$ with at least two elements, nonempty set $\Gamma$ and self-map $\varphi:\Gamma\to\Gamma$ we prove the set-theoretical entropy of generalized shift $\sigma_\varphi:X^\Gamma\to X^\Gamma$ ($\sigma_\varphi((x_\alpha)_{\alpha\in\Gamma})=(x_{\varphi(\alpha)})_{\alpha\in\Gamma}$ (for $(x_\alpha)_{\alpha\in\Gamma}\in X^\Gamma$)) is either zero or infinity, moreover it is zero if and only if $\varphi$ is quasi-periodic. We continue our study on contravariant set-theoretical entropy of generalized shift and motivate the text using counterexamples dealing with algebraic, topological, set-theoretical and contravariant set-theoretical positive entropies of generalized shifts.

Related articles: Most relevant | Search more
arXiv:2012.11069 [math.DS] (Published 2020-12-21)
Anosov-Katok constructions for quasi-periodic $\mathrm{SL}(2,R)$ cocycles
arXiv:1909.13100 [math.DS] (Published 2019-09-28)
On proximal relations in transformation semigroups arising from generalized shifts
arXiv:2204.07950 [math.DS] (Published 2022-04-17)
Li-Yorke and Devaney chaotic uniform dynamical systems amongst weighted shifts