arXiv:2204.07950 [math.DS]AbstractReferencesReviewsResources
Li-Yorke and Devaney chaotic uniform dynamical systems amongst weighted shifts
Fatemah Ayatollah Zadeh Shirazi, Elaheh Hakimi, Arezoo Hosseini, Reza Rezavand
Published 2022-04-17Version 1
In this paper, for finite discrete field $F$, nonempty set $\Gamma$, weight vector $\mathfrak{w}=({\mathfrak w}_\alpha)_{\alpha\in\Gamma}\in F^\Gamma$ and weighted generalized shift $\sigma_{\varphi,{\mathfrak w}}:F^\Gamma\to F^\Gamma$, we find necessary and sufficient conditions for uniform dynamical system $(F^\Gamma,\sigma_{\varphi,{\mathfrak w}})$ to be Li--Yorke chaotic. Next we find necessary and sufficient conditions for $(F^\Gamma,\sigma_{\varphi,{\mathfrak w}})$ to be Devaney chaotic.
Comments: 15 pages
Categories: math.DS
Related articles: Most relevant | Search more
arXiv:math/0303310 [math.DS] (Published 2003-03-25)
Sufficient conditions for robustness of attractors
arXiv:0901.2201 [math.DS] (Published 2009-01-15)
Sufficient conditions under which a transitive system is chaotic
arXiv:1406.1474 [math.DS] (Published 2014-06-05)
On Three Generalizations of Contraction