{ "id": "1709.01579", "version": "v1", "published": "2017-09-05T20:18:12.000Z", "updated": "2017-09-05T20:18:12.000Z", "title": "Set-theoretical entropies of generalized shifts", "authors": [ "Zahra Nili Ahmadabadi", "Fatemah Ayatollah Zadeh Shirazi" ], "comment": "12 pages", "categories": [ "math.DS" ], "abstract": "In the following text for arbitrary $X$ with at least two elements, nonempty set $\\Gamma$ and self-map $\\varphi:\\Gamma\\to\\Gamma$ we prove the set-theoretical entropy of generalized shift $\\sigma_\\varphi:X^\\Gamma\\to X^\\Gamma$ ($\\sigma_\\varphi((x_\\alpha)_{\\alpha\\in\\Gamma})=(x_{\\varphi(\\alpha)})_{\\alpha\\in\\Gamma}$ (for $(x_\\alpha)_{\\alpha\\in\\Gamma}\\in X^\\Gamma$)) is either zero or infinity, moreover it is zero if and only if $\\varphi$ is quasi-periodic. We continue our study on contravariant set-theoretical entropy of generalized shift and motivate the text using counterexamples dealing with algebraic, topological, set-theoretical and contravariant set-theoretical positive entropies of generalized shifts.", "revisions": [ { "version": "v1", "updated": "2017-09-05T20:18:12.000Z" } ], "analyses": { "subjects": [ "54C70" ], "keywords": [ "generalized shift", "contravariant set-theoretical positive entropies", "nonempty set", "contravariant set-theoretical entropy", "quasi-periodic" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }