arXiv Analytics

Sign in

arXiv:1704.07903 [math.RT]AbstractReferencesReviewsResources

The centralizer of $K$ in $U(\mathfrak{g}) \otimes C(\mathfrak{p})$ for the group $SO_e(4,1)$

Ana Prlić

Published 2017-04-25Version 1

Let $G$ be the Lie group $SO_e(4,1)$, with maximal compact subgroup $K = S(O(4) \times O(1))_e\cong SO(4)$. Let $\mathfrak{g}=\mathfrak{so}(5,\mathbb{C})$ be the complexification of the Lie algebra $\mathfrak{g}_0 = \mathfrak{so}(4,1)$ of $G$, and let $U(\mathfrak{g})$ be the universal enveloping algebra of $\mathfrak{g}$. Let $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$ be the Cartan decomposition of $\mathfrak{g}$, and $C(\mathfrak{p})$ the Clifford algebra of $\mathfrak{p}$ with respect to the trace form $B(X, Y) = \text{tr}(XY)$ on $\mathfrak{p}$. In this paper we give explicit generators of the algebra $(U(\mathfrak{g}) \otimes C(\mathfrak{p}))^{K}$.

Related articles: Most relevant | Search more
arXiv:1303.7223 [math.RT] (Published 2013-03-28, updated 2013-12-10)
Integral bases for the universal enveloping algebras of map superalgebras
arXiv:2106.13562 [math.RT] (Published 2021-06-25)
Branching of unitary $\operatorname{O}(1,n+1)$-representations with non-trivial $(\mathfrak{g},K)$-cohomology
arXiv:math/9809024 [math.RT] (Published 1998-09-06)
Gröbner-Shirshov Bases for Lie Superalgebras and Their Universal Enveloping Algebras