arXiv:math/9809024 [math.RT]AbstractReferencesReviewsResources
Gröbner-Shirshov Bases for Lie Superalgebras and Their Universal Enveloping Algebras
Leonid A. Bokut, Seok-Jin Kang, Kyu-Hwan Lee, Peter Malcolmson
Published 1998-09-06Version 1
We show that a set of monic polynomials in the free Lie superalgebra is a Gr\"obner-Shirshov basis for a Lie superalgebra if and only if it is a Gr\"obner-Shirshov basis for its universal enveloping algebra. We investigate the structure of Gr\"obner-Shirshov bases for Kac-Moody superalgebras and give explicit constructions of Gr\"obner-Shirshov bases for classical Lie superalgebras.
Related articles: Most relevant | Search more
arXiv:2405.08325 [math.RT] (Published 2024-05-14)
Centers of Universal Enveloping Algebras
arXiv:1906.07074 [math.RT] (Published 2019-06-17)
Snowflake modules and Enright functor for Kac-Moody superalgebras
arXiv:2307.15952 [math.RT] (Published 2023-07-29)
The argument shift method in universal enveloping algebra $U\mathfrak{gl}_d$