{ "id": "math/9809024", "version": "v1", "published": "1998-09-06T04:20:31.000Z", "updated": "1998-09-06T04:20:31.000Z", "title": "Gröbner-Shirshov Bases for Lie Superalgebras and Their Universal Enveloping Algebras", "authors": [ "Leonid A. Bokut", "Seok-Jin Kang", "Kyu-Hwan Lee", "Peter Malcolmson" ], "comment": "36 pages", "categories": [ "math.RT" ], "abstract": "We show that a set of monic polynomials in the free Lie superalgebra is a Gr\\\"obner-Shirshov basis for a Lie superalgebra if and only if it is a Gr\\\"obner-Shirshov basis for its universal enveloping algebra. We investigate the structure of Gr\\\"obner-Shirshov bases for Kac-Moody superalgebras and give explicit constructions of Gr\\\"obner-Shirshov bases for classical Lie superalgebras.", "revisions": [ { "version": "v1", "updated": "1998-09-06T04:20:31.000Z" } ], "analyses": { "subjects": [ "17A70" ], "keywords": [ "universal enveloping algebra", "gröbner-shirshov bases", "free lie superalgebra", "explicit constructions", "kac-moody superalgebras" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "1998math......9024B" } } }