{ "id": "1704.07903", "version": "v1", "published": "2017-04-25T21:01:31.000Z", "updated": "2017-04-25T21:01:31.000Z", "title": "The centralizer of $K$ in $U(\\mathfrak{g}) \\otimes C(\\mathfrak{p})$ for the group $SO_e(4,1)$", "authors": [ "Ana Prlić" ], "comment": "14 pages", "categories": [ "math.RT" ], "abstract": "Let $G$ be the Lie group $SO_e(4,1)$, with maximal compact subgroup $K = S(O(4) \\times O(1))_e\\cong SO(4)$. Let $\\mathfrak{g}=\\mathfrak{so}(5,\\mathbb{C})$ be the complexification of the Lie algebra $\\mathfrak{g}_0 = \\mathfrak{so}(4,1)$ of $G$, and let $U(\\mathfrak{g})$ be the universal enveloping algebra of $\\mathfrak{g}$. Let $\\mathfrak{g} = \\mathfrak{k} \\oplus \\mathfrak{p}$ be the Cartan decomposition of $\\mathfrak{g}$, and $C(\\mathfrak{p})$ the Clifford algebra of $\\mathfrak{p}$ with respect to the trace form $B(X, Y) = \\text{tr}(XY)$ on $\\mathfrak{p}$. In this paper we give explicit generators of the algebra $(U(\\mathfrak{g}) \\otimes C(\\mathfrak{p}))^{K}$.", "revisions": [ { "version": "v1", "updated": "2017-04-25T21:01:31.000Z" } ], "analyses": { "keywords": [ "centralizer", "maximal compact subgroup", "explicit generators", "universal enveloping algebra", "trace form" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable" } } }