arXiv:1704.06236 [math.RT]AbstractReferencesReviewsResources
Crystals from 5-vertex ice models
Published 2017-04-20Version 1
Given a partition $\lambda$ corresponding to a dominant integral weight of $\mathfrak{sl}_n$, we define the structure of crystal on the set of 5-vertex ice models satisfying certain boundary conditions associated to $\lambda$. We then show that the resulting crystal is isomorphic to that of the irreducible representation of highest weight $\lambda$.
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:1210.6464 [math.RT] (Published 2012-10-24)
Réflexions dans un cristal
arXiv:2204.05913 [math.RT] (Published 2022-04-12)
Non-associative Frobenius algebras for type $G_2$ and $F_4$
arXiv:1604.00429 [math.RT] (Published 2016-04-01)
On Universal Deformation Rings for Gorenstein Algebras