{ "id": "1704.06236", "version": "v1", "published": "2017-04-20T17:14:34.000Z", "updated": "2017-04-20T17:14:34.000Z", "title": "Crystals from 5-vertex ice models", "authors": [ "J. Lorca Espiro", "Luke Volk" ], "categories": [ "math.RT" ], "abstract": "Given a partition $\\lambda$ corresponding to a dominant integral weight of $\\mathfrak{sl}_n$, we define the structure of crystal on the set of 5-vertex ice models satisfying certain boundary conditions associated to $\\lambda$. We then show that the resulting crystal is isomorphic to that of the irreducible representation of highest weight $\\lambda$.", "revisions": [ { "version": "v1", "updated": "2017-04-20T17:14:34.000Z" } ], "analyses": { "keywords": [ "dominant integral weight", "highest weight", "boundary conditions", "resulting crystal", "isomorphic" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }