arXiv:1210.6464 [math.RT]AbstractReferencesReviewsResources
Réflexions dans un cristal
Pierre Baumann, Stéphane Gaussent, Joel Kamnitzer
Published 2012-10-24Version 1
Let g = n^- + h + n^+ be a symmetrizable Kac-Moody algebra. Let B(\infty) be the Kashiwara crystal of U_q(n^-), let \lambda be a dominant integral weight, let T_\lambda = {t_\lambda} be the crystal with one element of weight \lambda, and let B(\lambda) \subset B(\infty) \otimes T_\lambda be the crystal of the integrable representation of highest weight \lambda. We compute the descending string parameters of an element b \otimes t_\lambda in B(\lambda) in terms of the Lusztig parameters of b.
Comments: 4 pages; in French
Related articles: Most relevant | Search more
arXiv:1704.06236 [math.RT] (Published 2017-04-20)
Crystals from 5-vertex ice models
Weyl modules and Levi subalgebras
Restricted limits of minimal affinizations