arXiv Analytics

Sign in

arXiv:1611.02125 [math.AP]AbstractReferencesReviewsResources

Existence of solutions to degenerate parabolic problems with two weights via the Hardy inequality

Iwona Skrzypczak, Anna Zatorska-Goldstein

Published 2016-11-07Version 1

The paper concentrates on the application of the following Hardy inequality \begin{equation*} \int_\Omega \ |\xi(x)|^p \omega_{1 }(x)dx\le \int_\Omega |\nabla \xi(x)|^p\omega_{2 }(x)dx, \end{equation*} to the proof of existence of weak solutions to degenerate parabolic problems of the type \begin{equation*} \left\{\begin{array}{ll} u_t-div(\omega_2(x)|\nabla u|^{p-2} \nabla u )= \lambda W(x) |u|^{p-2}u& x\in\Omega, u(x,0)=f(x)& x\in\Omega, u(x,t)=0& x\in\partial\Omega,\ t>0,\\ \end{array}\right. \end{equation*} on an open subset $\Omega\subseteq\mathbb{R}^n$, not necessarily bounded, where \[W(x)\leq \min\{m,\omega_1(x)\},\qquad m\in\mathbb{R}_+.\]

Comments: 18 pages, submitted
Categories: math.AP
Subjects: 35K55, 35A01, 47J35
Related articles: Most relevant | Search more
arXiv:2301.11795 [math.AP] (Published 2023-01-27)
Higher regularity for weak solutions to degenerate parabolic problems
arXiv:2308.03148 [math.AP] (Published 2023-08-06)
Improved Hardy inequality with logarithmic term
arXiv:1210.5723 [math.AP] (Published 2012-10-21, updated 2013-04-15)
Hardy inequalities on Riemannian manifolds and applications