{ "id": "1611.02125", "version": "v1", "published": "2016-11-07T15:46:52.000Z", "updated": "2016-11-07T15:46:52.000Z", "title": "Existence of solutions to degenerate parabolic problems with two weights via the Hardy inequality", "authors": [ "Iwona Skrzypczak", "Anna Zatorska-Goldstein" ], "comment": "18 pages, submitted", "categories": [ "math.AP" ], "abstract": "The paper concentrates on the application of the following Hardy inequality \\begin{equation*} \\int_\\Omega \\ |\\xi(x)|^p \\omega_{1 }(x)dx\\le \\int_\\Omega |\\nabla \\xi(x)|^p\\omega_{2 }(x)dx, \\end{equation*} to the proof of existence of weak solutions to degenerate parabolic problems of the type \\begin{equation*} \\left\\{\\begin{array}{ll} u_t-div(\\omega_2(x)|\\nabla u|^{p-2} \\nabla u )= \\lambda W(x) |u|^{p-2}u& x\\in\\Omega, u(x,0)=f(x)& x\\in\\Omega, u(x,t)=0& x\\in\\partial\\Omega,\\ t>0,\\\\ \\end{array}\\right. \\end{equation*} on an open subset $\\Omega\\subseteq\\mathbb{R}^n$, not necessarily bounded, where \\[W(x)\\leq \\min\\{m,\\omega_1(x)\\},\\qquad m\\in\\mathbb{R}_+.\\]", "revisions": [ { "version": "v1", "updated": "2016-11-07T15:46:52.000Z" } ], "analyses": { "subjects": [ "35K55", "35A01", "47J35" ], "keywords": [ "degenerate parabolic problems", "hardy inequality", "paper concentrates", "weak solutions", "open subset" ], "note": { "typesetting": "TeX", "pages": 18, "language": "en", "license": "arXiv", "status": "editable" } } }