arXiv:1210.5723 [math.AP]AbstractReferencesReviewsResources
Hardy inequalities on Riemannian manifolds and applications
Lorenzo D'Ambrosio, Serena Dipierro
Published 2012-10-21, updated 2013-04-15Version 2
We prove a simple sufficient criteria to obtain some Hardy inequalities on Riemannian manifolds related to quasilinear second-order differential operator $\Delta_{p}u := \Div(\abs{\nabla u}^{p-2}\nabla u)$. Namely, if $\rho$ is a nonnegative weight such that $-\Delta_{p}\rho\geq0$, then the Hardy inequality $$c\int_{M}\frac{\abs{u}^{p}}{\rho^{p}}\abs{\nabla \rho}^{p} dv_{g} \leq \int_{M}\abs{\nabla u}^{p} dv_{g}, \quad u\in\Cinfinito_{0}(M)$$ holds. We show concrete examples specializing the function $\rho$.
Journal: Ann. Inst. H. Poincar\'{e} (C) Anal. Non Lin\'{e}aire (2013)
Categories: math.AP
Keywords: hardy inequality, applications, quasilinear second-order differential operator, simple sufficient criteria, concrete examples
Tags: journal article
Related articles: Most relevant | Search more
Vector analysis on fractals and applications
arXiv:math/0608312 [math.AP] (Published 2006-08-13)
Analyzability in the context of PDEs and applications
arXiv:math/0101119 [math.AP] (Published 2001-01-13)
On an estimate for the wave equation and applications to nonlinear problems