{ "id": "1210.5723", "version": "v2", "published": "2012-10-21T12:42:30.000Z", "updated": "2013-04-15T12:30:22.000Z", "title": "Hardy inequalities on Riemannian manifolds and applications", "authors": [ "Lorenzo D'Ambrosio", "Serena Dipierro" ], "journal": "Ann. Inst. H. Poincar\\'{e} (C) Anal. Non Lin\\'{e}aire (2013)", "categories": [ "math.AP" ], "abstract": "We prove a simple sufficient criteria to obtain some Hardy inequalities on Riemannian manifolds related to quasilinear second-order differential operator $\\Delta_{p}u := \\Div(\\abs{\\nabla u}^{p-2}\\nabla u)$. Namely, if $\\rho$ is a nonnegative weight such that $-\\Delta_{p}\\rho\\geq0$, then the Hardy inequality $$c\\int_{M}\\frac{\\abs{u}^{p}}{\\rho^{p}}\\abs{\\nabla \\rho}^{p} dv_{g} \\leq \\int_{M}\\abs{\\nabla u}^{p} dv_{g}, \\quad u\\in\\Cinfinito_{0}(M)$$ holds. We show concrete examples specializing the function $\\rho$.", "revisions": [ { "version": "v2", "updated": "2013-04-15T12:30:22.000Z" } ], "analyses": { "keywords": [ "hardy inequality", "applications", "quasilinear second-order differential operator", "simple sufficient criteria", "concrete examples" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1210.5723D" } } }