arXiv Analytics

Sign in

arXiv:1609.08659 [math.FA]AbstractReferencesReviewsResources

Tight J-frames in Krein space and the associated J-frame potential

Sk. Monowar Hossein, Shibashis Karmakar, Kallol Paul

Published 2016-09-27Version 1

Motivated by the idea of $J$-frame for a Krein space $\textbf{\textit{K}}$, introduced by Giribet \textit{et al.} (J. I. Giribet, A. Maestripieri, F. Mart\'inez Per\'{i}a, P. G. Massey, \textit{On frames for Krein spaces}, J. Math. Anal. Appl. (1), {\bf 393} (2012), 122--137.), we introduce the notion of $\zeta-J$-tight frame for a Krein space $\textbf{\textit{K}}$. In this paper we characterize $J$-orthonormal basis for $\textbf{\textit{K}}$ in terms of $\zeta-J$-Parseval frame. We show that a Krein space is richly supplied with $\zeta-J$-Parseval frames. We also provide a necessary and sufficient condition when the linear sum of two $\zeta-J$-Parseval frames is again a $\zeta-J$-Parseval frame. We then generalize the notion of $J$-frame potential in Krein space from Hilbert space frame theory. Finally we provided a necessary and sufficient condition for a $J$-frame potential of the corresponding $\zeta-J$-tight frame to be minimum.

Journal: IJMA, Vol.10, 2016, no.19, 917-931
Categories: math.FA
Subjects: 42C15, 46C05, 46C20
Related articles: Most relevant | Search more
arXiv:1406.6205 [math.FA] (Published 2014-06-24)
Frames on Krein Spaces
arXiv:1609.08658 [math.FA] (Published 2016-09-27)
J-Frame Sequences in Krein Space
arXiv:1611.01339 [math.FA] (Published 2016-11-04)
J-fusion frame for Krein spaces