{ "id": "1609.08659", "version": "v1", "published": "2016-09-27T20:45:49.000Z", "updated": "2016-09-27T20:45:49.000Z", "title": "Tight J-frames in Krein space and the associated J-frame potential", "authors": [ "Sk. Monowar Hossein", "Shibashis Karmakar", "Kallol Paul" ], "journal": "IJMA, Vol.10, 2016, no.19, 917-931", "doi": "10.12988/ijma.2016.6355", "categories": [ "math.FA" ], "abstract": "Motivated by the idea of $J$-frame for a Krein space $\\textbf{\\textit{K}}$, introduced by Giribet \\textit{et al.} (J. I. Giribet, A. Maestripieri, F. Mart\\'inez Per\\'{i}a, P. G. Massey, \\textit{On frames for Krein spaces}, J. Math. Anal. Appl. (1), {\\bf 393} (2012), 122--137.), we introduce the notion of $\\zeta-J$-tight frame for a Krein space $\\textbf{\\textit{K}}$. In this paper we characterize $J$-orthonormal basis for $\\textbf{\\textit{K}}$ in terms of $\\zeta-J$-Parseval frame. We show that a Krein space is richly supplied with $\\zeta-J$-Parseval frames. We also provide a necessary and sufficient condition when the linear sum of two $\\zeta-J$-Parseval frames is again a $\\zeta-J$-Parseval frame. We then generalize the notion of $J$-frame potential in Krein space from Hilbert space frame theory. Finally we provided a necessary and sufficient condition for a $J$-frame potential of the corresponding $\\zeta-J$-tight frame to be minimum.", "revisions": [ { "version": "v1", "updated": "2016-09-27T20:45:49.000Z" } ], "analyses": { "subjects": [ "42C15", "46C05", "46C20" ], "keywords": [ "krein space", "associated j-frame potential", "parseval frame", "tight j-frames", "tight frame" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }