arXiv:1609.08658 [math.FA]AbstractReferencesReviewsResources
J-Frame Sequences in Krein Space
Shibashis Karmakar, SK. Monowar Hossein, Kallol Paul
Published 2016-09-27Version 1
Let $\{f_n:n\in\mathbb{N}\}$ be a $J$-frame for a Krein space ${\textbf{\textit{K}}}$ and $P_M$ be a $J$-orthogonal projection from ${\textbf{\textit{K}}}$ onto a subspace $M$. In this article we find sufficient conditions under which $\{P_M(f_n):n\in\mathbb{N}\}$ is a $J$-frame for $P_M\textbf{\textit{K}}$ and $\{(I-P_M)f_n\}_{n\in{\mathbb{N}}}$ is a $J$-frame for $(I-P_M)\textbf{\textit{K}}$. We also introduce $J$-frame sequence for a Krein space ${\textbf{\textit{K}}}$ and study some properties of $J$-frame sequence analogues to Hilbert space frame theory.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:1611.01339 [math.FA] (Published 2016-11-04)
J-fusion frame for Krein spaces
arXiv:1612.00431 [math.FA] (Published 2016-12-01)
Properties of J-fusion frames in Krein space
arXiv:1406.6205 [math.FA] (Published 2014-06-24)
Frames on Krein Spaces