arXiv Analytics

Sign in

arXiv:1607.07067 [math.RT]AbstractReferencesReviewsResources

Classification of Category $\mathcal{J}$ Modules for Divergence Zero Vector Fields on a Torus

Yuly Billig, John Talboom

Published 2016-07-24Version 1

A family of modules for the Lie algebra of vector fields on a torus, called category $\mathcal{J}$, is defined in [1] where indecomposable modules in this category are classified. Modules in category $\mathcal{J}$ are required to admit an action by the algebra of Laurent polynomials that is compatible with that of the Lie algebra of vector fields. This paper presents an analogous category $\mathcal{J}$ for the subalgebra of divergence zero vector fields on a torus and classifies the indecomposable modules of this category.

Related articles: Most relevant | Search more
arXiv:0904.1318 [math.RT] (Published 2009-04-08)
Classification of simple q_2-supermodules
arXiv:1508.07203 [math.RT] (Published 2015-08-28)
The classification of the cyclic $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$--modules
arXiv:1304.5458 [math.RT] (Published 2013-04-19)
Classification of simple $W_n$-modules with finite-dimensional weight spaces