arXiv Analytics

Sign in

arXiv:1508.07203 [math.RT]AbstractReferencesReviewsResources

The classification of the cyclic $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$--modules

Paolo Casati

Published 2015-08-28Version 1

In this paper we classify all the cyclic finite dimensional indecomposable\\ modules of the perfect Lie algebras $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$, given by the semidirect sum of the simple Lie algebra $A_n$ with its standard representation. Furthermore, using the embeddings of the Lie algebras $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$ in $\mathfrak{sl}(n+2)$, we show that any finite dimensional irreducible module of $\mathfrak{sl}(n+2)$ restricted to $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$ is a cyclic module and that any cyclic $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$--modules can be constructed as quotient module of the restriction to $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$ of some finite dimensional irreducible $\mathfrak{sl}(n+2)$--modules. This explicit realization of the cyclic $\mathfrak{sl}(n+1)\ltimes \mathbbm{C}^{n+1}$--modules plays a role in their classification.

Related articles: Most relevant | Search more
arXiv:0904.1318 [math.RT] (Published 2009-04-08)
Classification of simple q_2-supermodules
arXiv:1606.06322 [math.RT] (Published 2016-06-20)
Classification of uniserial modules of $\mathfrak{sl}(2)\ltimes \mathfrak{h}_{n}$
arXiv:1202.2479 [math.RT] (Published 2012-02-11, updated 2012-04-03)
A classification of algebras stratified for all preorders by Koszul theory