{ "id": "1508.07203", "version": "v1", "published": "2015-08-28T13:33:15.000Z", "updated": "2015-08-28T13:33:15.000Z", "title": "The classification of the cyclic $\\mathfrak{sl}(n+1)\\ltimes \\mathbbm{C}^{n+1}$--modules", "authors": [ "Paolo Casati" ], "categories": [ "math.RT" ], "abstract": "In this paper we classify all the cyclic finite dimensional indecomposable\\\\ modules of the perfect Lie algebras $\\mathfrak{sl}(n+1)\\ltimes \\mathbbm{C}^{n+1}$, given by the semidirect sum of the simple Lie algebra $A_n$ with its standard representation. Furthermore, using the embeddings of the Lie algebras $\\mathfrak{sl}(n+1)\\ltimes \\mathbbm{C}^{n+1}$ in $\\mathfrak{sl}(n+2)$, we show that any finite dimensional irreducible module of $\\mathfrak{sl}(n+2)$ restricted to $\\mathfrak{sl}(n+1)\\ltimes \\mathbbm{C}^{n+1}$ is a cyclic module and that any cyclic $\\mathfrak{sl}(n+1)\\ltimes \\mathbbm{C}^{n+1}$--modules can be constructed as quotient module of the restriction to $\\mathfrak{sl}(n+1)\\ltimes \\mathbbm{C}^{n+1}$ of some finite dimensional irreducible $\\mathfrak{sl}(n+2)$--modules. This explicit realization of the cyclic $\\mathfrak{sl}(n+1)\\ltimes \\mathbbm{C}^{n+1}$--modules plays a role in their classification.", "revisions": [ { "version": "v1", "updated": "2015-08-28T13:33:15.000Z" } ], "analyses": { "subjects": [ "17B10", "22E70" ], "keywords": [ "classification", "perfect lie algebras", "simple lie algebra", "finite dimensional irreducible module", "cyclic finite dimensional" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }