{ "id": "1607.07067", "version": "v1", "published": "2016-07-24T17:03:39.000Z", "updated": "2016-07-24T17:03:39.000Z", "title": "Classification of Category $\\mathcal{J}$ Modules for Divergence Zero Vector Fields on a Torus", "authors": [ "Yuly Billig", "John Talboom" ], "comment": "15 pages", "categories": [ "math.RT" ], "abstract": "A family of modules for the Lie algebra of vector fields on a torus, called category $\\mathcal{J}$, is defined in [1] where indecomposable modules in this category are classified. Modules in category $\\mathcal{J}$ are required to admit an action by the algebra of Laurent polynomials that is compatible with that of the Lie algebra of vector fields. This paper presents an analogous category $\\mathcal{J}$ for the subalgebra of divergence zero vector fields on a torus and classifies the indecomposable modules of this category.", "revisions": [ { "version": "v1", "updated": "2016-07-24T17:03:39.000Z" } ], "analyses": { "subjects": [ "17B10", "17B66" ], "keywords": [ "divergence zero vector fields", "classification", "lie algebra", "indecomposable modules", "laurent polynomials" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }