arXiv:1607.03291 [math.LO]AbstractReferencesReviewsResources
Free sets for a set-mapping relative to a family of sets
Published 2016-07-12Version 1
Given a family $\mathcal{F}$ of subsets of $\{1,\ldots,m\}$, we try to compute the least natural number $n$ such that for every function $S:[\aleph_n]^{<\omega}\longrightarrow [\aleph_n]^{<\omega}$ there exists a bijection $u:\{1,\ldots,m\}\longrightarrow Y\subset \aleph_n$ such that $Su(A)\cap Y \subset u(A)$ for all $A\in\mathcal{F}$.
Categories: math.LO
Related articles: Most relevant | Search more
arXiv:1502.03615 [math.LO] (Published 2015-02-12)
Searching through the reals
Large free sets in universal algebras
arXiv:2407.10183 [math.LO] (Published 2024-07-14)
Boundedly finite-to-one functions