{ "id": "1607.03291", "version": "v1", "published": "2016-07-12T10:03:45.000Z", "updated": "2016-07-12T10:03:45.000Z", "title": "Free sets for a set-mapping relative to a family of sets", "authors": [ "Antonio Avilés", "Claribet Piña" ], "categories": [ "math.LO" ], "abstract": "Given a family $\\mathcal{F}$ of subsets of $\\{1,\\ldots,m\\}$, we try to compute the least natural number $n$ such that for every function $S:[\\aleph_n]^{<\\omega}\\longrightarrow [\\aleph_n]^{<\\omega}$ there exists a bijection $u:\\{1,\\ldots,m\\}\\longrightarrow Y\\subset \\aleph_n$ such that $Su(A)\\cap Y \\subset u(A)$ for all $A\\in\\mathcal{F}$.", "revisions": [ { "version": "v1", "updated": "2016-07-12T10:03:45.000Z" } ], "analyses": { "keywords": [ "free sets", "set-mapping relative", "natural number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }