arXiv:1209.6444 [math.LO]AbstractReferencesReviewsResources
Large free sets in universal algebras
Taras Banakh, Artur Bartoszewicz, Szymon Głab
Published 2012-09-28, updated 2014-12-03Version 3
We prove that for each universal algebra $(A,\mathcal A)$ of cardinality $|A|\ge 2$ and an infinite set $X$ of cardinality $|X|\ge|\mathcal A|$, the $X$-th power $(A^X,\mathcal A^X)$ of the algebra $(A,\mathcal A)$ contains a free subset $\mathcal F\subset A^X$ of cardinality $|\mathcal F|=2^{|X|}$. This generalizes the classical Fichtenholtz-Kantorovitch-Hausdorff result on the existence of an independent family $\mathcal I\subset\mathcal P(X)$ of cardinality $|\mathcal I|=|\mathcal P(X)|$ in the Boolean algebra $\mathcal P(X)$ of subsets of an infinite set $X$.
Related articles: Most relevant | Search more
arXiv:1607.03291 [math.LO] (Published 2016-07-12)
Free sets for a set-mapping relative to a family of sets
arXiv:1104.4606 [math.LO] (Published 2011-04-24)
Universal Algebra and Mathematical Logic
arXiv:2203.14054 [math.LO] (Published 2022-03-26)
Universal Clone Algebra