{ "id": "1209.6444", "version": "v3", "published": "2012-09-28T08:01:09.000Z", "updated": "2014-12-03T18:11:52.000Z", "title": "Large free sets in universal algebras", "authors": [ "Taras Banakh", "Artur Bartoszewicz", "Szymon Głab" ], "comment": "4 pages", "journal": "Algebra Universalis, 71 (2014) 23-29", "doi": "10.1007/s00012-013-0261-0", "categories": [ "math.LO", "math.RA" ], "abstract": "We prove that for each universal algebra $(A,\\mathcal A)$ of cardinality $|A|\\ge 2$ and an infinite set $X$ of cardinality $|X|\\ge|\\mathcal A|$, the $X$-th power $(A^X,\\mathcal A^X)$ of the algebra $(A,\\mathcal A)$ contains a free subset $\\mathcal F\\subset A^X$ of cardinality $|\\mathcal F|=2^{|X|}$. This generalizes the classical Fichtenholtz-Kantorovitch-Hausdorff result on the existence of an independent family $\\mathcal I\\subset\\mathcal P(X)$ of cardinality $|\\mathcal I|=|\\mathcal P(X)|$ in the Boolean algebra $\\mathcal P(X)$ of subsets of an infinite set $X$.", "revisions": [ { "version": "v2", "updated": "2013-01-09T13:24:34.000Z", "title": "Independent and free sets in universal algebras", "abstract": "We discuss notions of independent and free sets in universal algebras, and more generally, in spaces endowed with a hull operator. Our main result says that for each universal algebra $\\mathbb A=(A,\\mathcal A)$ of cardinality $|A|\\ge 2$ and an infinite set $X$ of cardinality $|X|\\ge|\\mathcal A|$, the $X$-power $\\mathbb A^X=(A^X,\\mathcal A^X)$ of the algebra $\\mathbb A$ contains an $\\mathcal A$-free subset $\\mathcal F\\subset A^X$ of cardinality $|\\mathcal F|=2^{|X|}$. This generalizes a classical Fichtenholtz-Katorovitch-Hausdorff result on the existence of large independent families of subsets of a given infinite set.", "comment": "10 pages", "journal": null, "doi": null }, { "version": "v3", "updated": "2014-12-03T18:11:52.000Z" } ], "analyses": { "subjects": [ "05B35", "08A99", "17A50" ], "keywords": [ "universal algebra", "free sets", "infinite set", "main result says", "large independent families" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012arXiv1209.6444B" } } }