arXiv Analytics

Sign in

arXiv:1512.02373 [math.DS]AbstractReferencesReviewsResources

On the rate of equidistribution of expanding horospheres in finite-volume quotients of $\mathrm{SL}(2,\mathbb{C})$

Samuel Edwards

Published 2015-12-08Version 1

Let $\Gamma$ be a lattice in $G=\mathrm{SL}(2,\mathbb{C})$. We give an effective equidistribution result with precise error terms for expanding translates of pieces of horospherical orbits in $\Gamma\backslash G$. Our method of proof relies on the theory of unitary representations.

Related articles: Most relevant | Search more
arXiv:2408.13861 [math.DS] (Published 2024-08-25)
Topological rigidity of closures of certain sparse unipotent orbits in finite-volume quotients of $\prod_{i=1}^k\operatorname{SL}_2(\mathbb R)$
arXiv:1712.03258 [math.DS] (Published 2017-12-08)
Equidistribution of Farey sequences on horospheres in covers of SL(n+1,Z)\SL(n+1,R) and applications
arXiv:1503.05973 [math.DS] (Published 2015-03-20)
Sparse Equidistribution of Unipotent Orbits in Finite-Volume Quotients of $\text{PSL}(2,\mathbb R)$