arXiv Analytics

Sign in

arXiv:1503.05973 [math.DS]AbstractReferencesReviewsResources

Sparse Equidistribution of Unipotent Orbits in Finite-Volume Quotients of $\text{PSL}(2,\mathbb R)$

Cheng Zheng

Published 2015-03-20Version 1

In this note, we consider the orbits $\{pu(n^{1+\gamma})|n\in\mathbb N\}$ in $\Gamma\backslash\text{PSL}(2,\mathbb R)$, where $\Gamma$ is a non-uniform lattice in $\text{PSL}(2,\mathbb R)$ and $u(t)$ is the standard unipotent group in $\text{PSL}(2,\mathbb R)$. Under a Diophantine condition on the intial point $p$, we can prove that $\{pu(n^{1+\gamma})|n\in\mathbb N\}$ is equidistributed in $\Gamma\backslash\text{PSL}(2,\mathbb R)$ for small $\gamma>0$, which generalizes a result of Venkatesh (Ann.of Math. 2010).

Related articles: Most relevant | Search more
arXiv:1512.02373 [math.DS] (Published 2015-12-08)
On the rate of equidistribution of expanding horospheres in finite-volume quotients of $\mathrm{SL}(2,\mathbb{C})$
arXiv:2206.12019 [math.DS] (Published 2022-06-24)
An avoidance principle and Margulis functions for expanding translates of unipotent orbits
arXiv:1610.01870 [math.DS] (Published 2016-10-06)
Hausdorff Dimension of Non-Diophantine Points in Finite-Volume Quotients of Rank One Semisimple Lie Groups