arXiv:2408.13861 [math.DS]AbstractReferencesReviewsResources
Topological rigidity of closures of certain sparse unipotent orbits in finite-volume quotients of $\prod_{i=1}^k\operatorname{SL}_2(\mathbb R)$
Published 2024-08-25Version 1
We give a simple proof about the topological rigidity of closures of certain sparse unipotent orbits in $G/\Gamma$ where $G=\prod_{i=1}^k\operatorname{SL}_2(\mathbb R)$ and $\Gamma$ is an irreducible lattice in $G$.
Comments: 18 pages
Categories: math.DS
Related articles: Most relevant | Search more
arXiv:1512.02373 [math.DS] (Published 2015-12-08)
On the rate of equidistribution of expanding horospheres in finite-volume quotients of $\mathrm{SL}(2,\mathbb{C})$
arXiv:1710.11164 [math.DS] (Published 2017-10-30)
A simple proof of a theorem of sensitivity
arXiv:1801.02835 [math.DS] (Published 2018-01-09)
Topological rigidity of linear cellular automaton shifts