arXiv:1504.03227 [math.NT]AbstractReferencesReviewsResources
A New Congruence On Multiple Harmonic Sums and Bernoulli Numbers
Published 2015-04-13Version 1
Let ${\mathcal{P}_{n}}$ denote the set of positive integers which are prime to $n$. Let $B_{n}$ be the $n$-th Bernoulli number. For any prime $p \ge 11$ and integer $r\ge 2$, we prove that $$ \sum\limits_{\begin{smallmatrix} {{l}_{1}}+{{l}_{2}}+\cdots +{{l}_{6}}={{p}^{r}} {{l}_{1}},\cdots ,{{l}_{6}}\in {\mathcal{P}_{p}} \end{smallmatrix}}{\frac{1}{{{l}_{1}}{{l}_{2}}{{l}_{3}}{{l}_{4}}{{l}_{5}}{l}_{6}}}\equiv - \frac{{5!}}{18}p^{r-1}B_{p-3}^{2} \pmod{{{p}^{r}}}. $$ This extends a family of curious congruences.
Comments: 22 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1410.1712 [math.NT] (Published 2014-10-07)
A New Super Congruence Involving Multiple Harmonic Sums
arXiv:2305.07869 [math.NT] (Published 2023-05-13)
Some new curious congruences involving multiple harmonic sums
Finiteness of p-Divisible Sets of Multiple Harmonic Sums