{ "id": "1504.03227", "version": "v1", "published": "2015-04-13T15:49:16.000Z", "updated": "2015-04-13T15:49:16.000Z", "title": "A New Congruence On Multiple Harmonic Sums and Bernoulli Numbers", "authors": [ "Liuquan Wang" ], "comment": "22 pages", "categories": [ "math.NT" ], "abstract": "Let ${\\mathcal{P}_{n}}$ denote the set of positive integers which are prime to $n$. Let $B_{n}$ be the $n$-th Bernoulli number. For any prime $p \\ge 11$ and integer $r\\ge 2$, we prove that $$ \\sum\\limits_{\\begin{smallmatrix} {{l}_{1}}+{{l}_{2}}+\\cdots +{{l}_{6}}={{p}^{r}} {{l}_{1}},\\cdots ,{{l}_{6}}\\in {\\mathcal{P}_{p}} \\end{smallmatrix}}{\\frac{1}{{{l}_{1}}{{l}_{2}}{{l}_{3}}{{l}_{4}}{{l}_{5}}{l}_{6}}}\\equiv - \\frac{{5!}}{18}p^{r-1}B_{p-3}^{2} \\pmod{{{p}^{r}}}. $$ This extends a family of curious congruences.", "revisions": [ { "version": "v1", "updated": "2015-04-13T15:49:16.000Z" } ], "analyses": { "subjects": [ "11A07", "11A41" ], "keywords": [ "multiple harmonic sums", "th bernoulli number", "curious congruences", "positive integers" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2015arXiv150403227W" } } }