arXiv Analytics

Sign in

arXiv:1410.1712 [math.NT]AbstractReferencesReviewsResources

A New Super Congruence Involving Multiple Harmonic Sums

Liuquan Wang

Published 2014-10-07Version 1

Let ${\mathcal{P}_{n}}$ denote the set of positive integers which are prime to $n$. Let $B_{n}$ be the $n$-th Bernoulli number. For any prime $p\ge 5$ and $r\ge 2$, we prove that \begin{equation} \sum\limits_{\begin{smallmatrix} {{l}_{1}}+{{l}_{2}}+\cdots +{{l}_{5}}={{p}^{r}} {{l}_{1}},\cdots ,{{l}_{5}}\in {\mathcal{P}_{p}} \end{smallmatrix}}{\frac{1}{{{l}_{1}}{{l}_{2}}{{l}_{3}}{{l}_{4}}{{l}_{5}}}}\equiv -\frac{5!}{6}{{B}_{p-5}}{{p}^{r-1}} \pmod{{{p}^{r}}}. \end{equation} This gives an extension of a family of super congruences found by Wang, Cai and Zhao.

Comments: 10 pages
Categories: math.NT
Subjects: 11A07, 11A41
Related articles: Most relevant | Search more
arXiv:1504.03227 [math.NT] (Published 2015-04-13)
A New Congruence On Multiple Harmonic Sums and Bernoulli Numbers
arXiv:2305.07869 [math.NT] (Published 2023-05-13)
Some new curious congruences involving multiple harmonic sums
arXiv:math/0303043 [math.NT] (Published 2003-03-04, updated 2010-08-13)
Finiteness of p-Divisible Sets of Multiple Harmonic Sums