{ "id": "1410.1712", "version": "v1", "published": "2014-10-07T13:01:48.000Z", "updated": "2014-10-07T13:01:48.000Z", "title": "A New Super Congruence Involving Multiple Harmonic Sums", "authors": [ "Liuquan Wang" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "Let ${\\mathcal{P}_{n}}$ denote the set of positive integers which are prime to $n$. Let $B_{n}$ be the $n$-th Bernoulli number. For any prime $p\\ge 5$ and $r\\ge 2$, we prove that \\begin{equation} \\sum\\limits_{\\begin{smallmatrix} {{l}_{1}}+{{l}_{2}}+\\cdots +{{l}_{5}}={{p}^{r}} {{l}_{1}},\\cdots ,{{l}_{5}}\\in {\\mathcal{P}_{p}} \\end{smallmatrix}}{\\frac{1}{{{l}_{1}}{{l}_{2}}{{l}_{3}}{{l}_{4}}{{l}_{5}}}}\\equiv -\\frac{5!}{6}{{B}_{p-5}}{{p}^{r-1}} \\pmod{{{p}^{r}}}. \\end{equation} This gives an extension of a family of super congruences found by Wang, Cai and Zhao.", "revisions": [ { "version": "v1", "updated": "2014-10-07T13:01:48.000Z" } ], "analyses": { "subjects": [ "11A07", "11A41" ], "keywords": [ "multiple harmonic sums", "super congruence", "th bernoulli number", "positive integers" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1410.1712W" } } }