arXiv:1409.5535 [math.FA]AbstractReferencesReviewsResources
Further refinements of the Cauchy-Schwarz inequality for matrices
Published 2014-09-19Version 1
Let $A, B$ and $X$ be $n\times n$ matrices such that $A, B$ are positive semidefinite. We present some refinements of the matrix Cauchy-Schwarz inequality by using some integration techniques and various refinements of the Hermite--Hadamard inequality. In particular, we establish the inequality \begin{align*} |||\,|A^{1\over2}XB^{1\over2}|^r|||^2&\leq|||\,|A^{t}XB^{1-s}|^r||| \,\,\,|||\,|A^{1-t}XB^{s}|^r|||\\& \leq\max \{|||\,|AX|^r||| \,\,\,|||\,|XB|^r|||,|||\,|AXB|^r||| \,\,\,|||\,|X|^r|||\}, \end{align*} where $s,t\in[0,1]$ and $r\geq0$.
Categories: math.FA
Related articles: Most relevant | Search more
arXiv:2205.02657 [math.FA] (Published 2022-05-05)
On the matrix Cauchy-Schwarz inequality
arXiv:2308.09261 [math.FA] (Published 2023-08-18)
Refinements of generalized Euclidean operator radius inequalities of 2-tuple operators
arXiv:2010.05826 [math.FA] (Published 2020-10-12)
Some refinements of numerical radius inequalities