{ "id": "1409.5535", "version": "v1", "published": "2014-09-19T07:40:53.000Z", "updated": "2014-09-19T07:40:53.000Z", "title": "Further refinements of the Cauchy-Schwarz inequality for matrices", "authors": [ "Mojtaba Bakherad" ], "categories": [ "math.FA" ], "abstract": "Let $A, B$ and $X$ be $n\\times n$ matrices such that $A, B$ are positive semidefinite. We present some refinements of the matrix Cauchy-Schwarz inequality by using some integration techniques and various refinements of the Hermite--Hadamard inequality. In particular, we establish the inequality \\begin{align*} |||\\,|A^{1\\over2}XB^{1\\over2}|^r|||^2&\\leq|||\\,|A^{t}XB^{1-s}|^r||| \\,\\,\\,|||\\,|A^{1-t}XB^{s}|^r|||\\\\& \\leq\\max \\{|||\\,|AX|^r||| \\,\\,\\,|||\\,|XB|^r|||,|||\\,|AXB|^r||| \\,\\,\\,|||\\,|X|^r|||\\}, \\end{align*} where $s,t\\in[0,1]$ and $r\\geq0$.", "revisions": [ { "version": "v1", "updated": "2014-09-19T07:40:53.000Z" } ], "analyses": { "keywords": [ "refinements", "matrix cauchy-schwarz inequality", "hermite-hadamard inequality" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2014arXiv1409.5535B" } } }