arXiv Analytics

Sign in

arXiv:1409.1305 [math.RT]AbstractReferencesReviewsResources

A superdimension formula for gl(m|n) modules

Michael Chmutov, Rachel Karpman, Shifra Reif

Published 2014-09-04Version 1

We give a formula for the superdimension of a finite-dimensional simple gl(m|n)-module using the Su-Zhang character formula. As a corollary, we obtain a simple algebraic proof of a conjecture of Kac-Wakimoto for gl(m|n), namely, a simple module has nonzero superdimension if and only if it has maximal degree of atypicality. This conjecture was proven originally by Serganova using the Duflo-Serganova associated variety.

Related articles: Most relevant | Search more
arXiv:0805.4575 [math.RT] (Published 2008-05-29, updated 2009-04-30)
On a conjecture of Kottwitz and Rapoport
arXiv:1205.6748 [math.RT] (Published 2012-05-30, updated 2012-06-01)
On the homomorphisms between scalar generalized Verma modules
arXiv:1405.6371 [math.RT] (Published 2014-05-25, updated 2014-09-18)
Sur une conjecture de Breuil-Herzig